# RECENT DEVELOPMENTS IN NJL-JET MODEL: TMD

Hrayr Matevosyan CSSM

> Collaborators: A.W.Thomas, W. Bentz & I.Cloet

> PacSPIN 2011 - Cairns: June 20-24, 2011

# OUTLOOK

- Motivation
- Short Overview of the NJL-jet model:
  - Strange quark and Kaons
  - Monte-Carlo approach:
    - Vector mesons, Nucleon-Antinucleon channels, secondary hadrons from the decays of resonances.
- Transverse Momentum Dependent FF, Hadron TM in SIDIS.
- Dihadron Fragmentation Functions.
- Future Plans.

# EXPLORING HADRON STRUCTURE

A. Kotzinian, Nucl. Phys. B441, 234 (1995).

- Semi-inclusive deep inelastic scattering (SIDIS):  $e N \rightarrow e h X$
- Cross-section factorizes into parton

distribution and fragmentation functions.

Access to hadron structure:

• Ex., unpolarized cross section is  $\sim$ 

$$\sum_{q} e_{q}^{2} \int d^{2}\mathbf{k}_{\perp} f_{1}^{q}(x,k_{\perp}) \pi y^{2} \frac{\hat{s}^{2} + \hat{u}^{2}}{Q^{4}} D_{q}^{h}(z,p_{\perp})$$



# MOTIVATION

- Providing guidance based on a sophisticated model for applications to problems where phenomenology is difficult/ inadequate.
- Unfavored fragmentation functions from the model that goes beyond a single hadron emission approximation.
- Automatically satisfies the sum rules (at the model scale).
- Transverse-momentum dependent (TMD) fragmentations in the same model where structure functions (both unpolarized and polarized) were calculated.

#### THE QUARK JET MODEL

#### Field, Feynman.Nucl.Phys.B136:1,1978.

#### Assumptions:

- Number Density
   interpretation
- No re-absorption
- ∞ hadron emissions



#### THE QUARK JET MODEL

( )

#### Field, Feynman.Nucl.Phys.B136:1,1978.

#### Assumptions:

- Number Density
   interpretation
- No re-absorption
- ∞ hadron emissions

The probability of finding mesons m with mom. fraction z in a jet of quark q

> Probability of emitting the meson at link I Probability of Momentum fraction y is transferred to jet at step I

 $D_q^m(z)dz = \hat{d}_q^m(z)dz + \int_z^1 \hat{d}_q^Q(y)dy \cdot D_Q^m(\frac{z}{y})$ 

q

The probability scales with mom. fraction

 $Q^{\prime\prime}$ 

Q'

# NJL-JET: ELEMENTARY SPLITTING FUNCTIONS FROM NJL

• One-quark truncation of the wavefunction:  $d^m_q(z): q \to Qm \quad m = q\bar{Q} \quad \underbrace{}^{k}$ 

Only 4-point interaction in the Lagrangian
Lepage-Brodsky (LB)Invariant Mass Cutoff <u>Regularization</u>

 $\begin{array}{c} u \to d\pi^+ \\ u \to sk^+ \end{array}$ 



k

k-p

# SOLUTIONS OF THE INTEGRAL EQUATIONS



 $\pi^+$ 

 $K^+$ 



Fit Function -  $f(z) = N z^{\alpha} (1-z)^{\beta}$ 

# STRANGENESS EFFECT IN PION

Ito et al. Phys.Rev.D80:074008,2009

#### Favored

#### Unfavored



# MONTE-CARLO (MC) APPROACH



- Simulate decay chains to extract number densities.
- Allows for inclusion of TMD and experimental cut-offs.
- Numerically trivially parallelizeable (MPI, GPGPU).

### FRAGMENTATIONS FROM MC STARTING WITH PIONS

Assume Cascade process:



- Sample the emitted hadron according to splitting weight.
- Randomly sample *z* from input splittings.
- Evolve to sufficiently large number of decay links.
- Repeat for decay chains with the same initial quark.

$$\left(D_q^h(z)\Delta z = \left\langle N_q^h(z, z + \Delta z) \right\rangle \equiv \frac{\sum_{N_{Sims}} N_q^h(z, z + \Delta z)}{N_{Sims}}\right)$$

### FRAGMENTATIONS FROM MC STARTING WITH PIONS

Assume Cascade process:



- Sample the emitted hadron according to splitting weight.
- Randomly sample *z* from input splittings.
- Evolve to sufficiently large number of decay links.
- Repeat for decay chains with the same initial quark.

$$\left(D_q^h(z)\Delta z = \left\langle N_q^h(z, z + \Delta z) \right\rangle \equiv \frac{\sum_{N_{Sims}} N_q^h(z, z + \Delta z)}{N_{Sims}}\right)$$



# DEPENDENCE ON CHAIN CUTOFF

• Restrict the number of emitted hadrons,  $N_{Links}$  in MC.



• We reproduce the splitting function and the full solution perfectly.

• The low z region is saturated with just a few emissions.

MORE CHANNELS: VECTOR MESONS

• Calculate quark splittings  $d_q^m(z)$  in vector channel:

$$(m = \rho^0, \rho^{\pm}, K^{*0}, \overline{K}^{*0}, K^{*\pm}, \phi)$$

Add the decay of the resonances:



• Decay cross-section in light-front variables:

 $dP^{h \to h_1, h_2}(z_1) = \begin{cases} \frac{C_h^{h_1 h_2}}{8\pi} dz_1 & \text{if } z_1 z_2 m_h^2 - z_2 m_{h1}^2 - z_1 m_{h2}^2 \ge 0; \ z_1 + z_2 = 1, \\ 0 & \text{otherwise.} \end{cases}$ 

### More Channels: Nucleon Anti-Nucleon

- Invoke quark-diquark model for nucleon.
- Calculate splittings  $d_q^N(z)$  and  $d_{\overline{qq}}^{\overline{N}}(z)$  ( quark to nucleon and anti-diquark to anti-nucleon):



• We considered only scalar (anti-)diquarks (for now).









The Momentum (and Isospin) sumrules satisfied within numerical precision (less than 0.1 %)!

Results:  $Q^2 = 4 \text{ GeV}^2$ 

#### Favored

#### Unfavored





#### INCLUDING THE TRANSVERSE MOMENTUM



- TMD splittings:  $d(z,p_{\perp}^2)$
- Conserve transverse momenta at each link.





Calculate the Number Density

 $D_q^h(z, P_\perp^2) \Delta z \ \pi \Delta P_\perp^2 = \frac{\sum_{N_{Sims}} N_q^h(z, z + \Delta z, P_\perp^2, P_\perp^2 + \Delta P_\perp^2)}{N_{Sims}}.$ 

#### INCLUDING THE TRANSVERSE MOMENTUM



- TMD splittings:  $d(z,p_{\perp}^2)$ 

Approximate  $\mathcal{O}(k^2/Q^2)$ 

Conserve transverse momenta at each link.

$$\mathbf{P}_{\perp} = \mathbf{p}_{\perp} + z\mathbf{k}_{\perp}$$
$$\mathbf{k}_{\perp} = \mathbf{P}_{\perp} + \mathbf{k}'_{\perp}$$

Calculate the Number Density

 $D_q^h(z, P_\perp^2) \Delta z \ \pi \Delta P_\perp^2 = \frac{\sum_{N_{Sims}} N_q^h(z, z + \Delta z, P_\perp^2, P_\perp^2 + \Delta P_\perp^2)}{N_{Sims}}.$ 

# TMD SPLITTING FUNCTIONS

• TMD splittings from the NJL model

• Use dipole cutoff function with LB regularizations

 $\left| \langle P_{\perp}^2 \rangle \equiv \frac{\int d^2 \mathbf{P}_{\perp} \ P_{\perp}^2 D(z, P_{\perp}^2)}{\int d^2 \mathbf{P}_{\perp} \ D(z, P_{\perp}^2)} \right.$ 



### TMD FRAGMENTATION FUNCTIONS



• FAVORED

### TMD FRAGMENTATION FUNCTIONS



UNFAVORED



- Use TMD quark distribution functions calculated in the NJL model (see Ian Cloet's talk)
- Transfer of the transverse momentum:

$$\mathbf{P}_{\mathbf{T}} = \mathbf{P}_{\perp} + z\mathbf{k}_{\perp}$$

• Evaluate  $\langle P_T^2 \rangle$  using MC simulations to calculate the number densities

#### AVERAGETRANSVERSE MOMENTA



### AVERAGETRANSVERSE MOMENTA



Input:  $\mathbf{P_T} = \mathbf{P}_{\perp} + z\mathbf{k}_{\perp}$ Output:  $\langle P_T^2 \rangle = \langle P_{\perp}^2 \rangle + z^2 \langle k_{\perp} \rangle$ 

### AVERAGETRANSVERSE MOMENTA



Input:  $\mathbf{P_T} = \mathbf{P}_{\perp} + z\mathbf{k}_{\perp}$ Output:  $\langle P_T^2 \rangle = \langle P_{\perp}^2 \rangle + z^2 \langle k_{\perp} \rangle$ 

#### NAIVE COMPARISON WITH EXPERIMENT



A. Airapetian et al. (HERMES Collaboration), Phys.Lett. B684, 114 (2010). D target, Integration over  $Q^2$  and x .

#### DIHADRON FRAGMENTATION FUNCTIONS



See Andrew Casey's Talk on Wednesday at 17:35!

# SUMMARY











# Cheers!

 $\alpha_s(M_z^2) = 0.118$ 









